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Energy-Momentum Four-Vector on a Wavefront 

Pierre Hi l l ion  1 

Received February 15, 1989 

We first discuss the synchronous and asynchronous interpretations of relativistic 
dynamics, and then prove that the synchronous formulation makes it possible 
to define in the limit v ~ c the energy-momentum four-vector of a classical field 
on a wavefront propagating with the velocity of light. It is also shown that except 
for plane waves, the Poynting vector is not the energy flow vector of the 
electromagnetic field. 

1. I N T R O D U C T I O N  

Let us cons ide r  in c lass ical  field theory  a b o u n d a r y  va lue  p r o b l e m  with 
da ta  on  a wavef ron t  p r o p a g a t i n g  with the  ve loc i ty  o f  l ight  (Hi l l ion ,  1988). 
We ask how to define the  e n e r g y - m o m e n t u m  four -vec tor  P~ on this wave-  
front.  

We start  with a d i scuss ion  on the def in i t ion  o f  P~ f rom the energy-  
m o m e n t u m  tensor  T ~  o f  the  field. We use the  s ignature  (+ ,  + ,  + ,  + )  with 
the  coo rd ina t e s  xi,  i = 1, 2, 3, x4 = ict and  the s u m m a t i o n  convent ion .  The 
G r e e k  ind ices  take the  values  1, 2, 3, 4; the  Lat in  indices  take  the  values  
1, 2, 3. 

2. T W O  I N T E R P R E T A T I O N S  O F  R E L A T I V I S T I C  D Y N A M I C S  

2.1. The Quest ion at Issue 

As is well known,  a par t ic le  o f  p r o p e r  mass  m w i t h  four -ve loc i ty  u~ 
has  a m o m e n t u m  four -vec to r  P~ = ( m / c Z ) y u ~ ,  where  c is the veloci ty  o f  
l ight and  y = ( u ~ u ~ ) - l / 2  The ex tens ion  o f  this  fo rmula  to an a rb i t r a ry  system 
is given in the rest f rame (charac te r ized  by  the supersc r ip t  zero)  o f  this 
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system by the relation 

pO = I gO dV (1) 

where the integral is over the whole volume of  the system at time t = const, 
while the energy-momentum density gO is defined in terms of  TOy by the 
relations 

iT)~ g ~ = - T]4 (2) 0 

gJ = c  

This leads one to define P .  in any inertial frame by the relation 

P~, = j g, dV (3) 

The question at issue is: How does one define g.  and dV so that P~, is a 
four-vector? We start with a remark on the physical interpretation of the 
Lorentz transformations. 

The principle of  relativity imposes conditions which all physical laws 
have to satisfy. But these conditions take different forms according to the 
way that measurements are realized. There are two main points of  view. 
The most usual one since Einstein's formulation of relativity is the syn- 
chronous interpretation in which one considers a system at a given moment 
in the observer's frame (Van Bladel, 1984). But some years ago, it became 
clear that the description is unfit for a global description of physical systems. 
In the asynchronous interpretation one looks at simultaneous events in the 
rest frame of the system (Van Bladel, 1984). These two interpretations do 
not supply the same relations for the transformations of the relativistic 
kinematics and dynamics under the Lorentz group. This leads to a different 
choice of  variables associated to observable quantities. Consequently we 
shall discuss the definition (3) in both interpretations. 

2.2. Synchronous Interpretation 

In this interpretation each observer integrates at constant time in his 
inertial frame. Then the boundaries of the volume are taken as contemporary 
for both observer at rest and moving observer, so that the volume element 
transforms according to the relation 

d V = y - ' d V ~  3 ' = ( 1  v2'~ 
~ 1 ~ 2 

- 7 2 1  (4) 

Then to make (4) consistent with (2) and (3), g.  is defined by the relation 

i 
g~ = - T/4, g~ = - T44 (5) 

/ C " 
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where the superscript s means that one uses the synchronous interpretation. 
This definition of the energy-momentum "vector"  has three drawbacks. 

(i) P~, is a four-vector only for closed systems (M611er, 1957), that 
is, for systems satisfying the conservation equation O~T~ -- 0. For nonclosed 
systems P~, requires extra forces of  dubious physical meaning, some of 
which are discussed by G a m b a  (1967) and Gron (1973). 

(ii) The two quantities d V  and d V  ~ do not refer in fact to the same 
set of  events. 

(iii) I f  one has in the rest frame T~ ~ 0 or T~ ~ 0, then, as we shall 
see later, the energy-momentum vector for an observer moving in the z 
direction has a component  normal to this direction different from zero, 
opposite to the prerelativistic meaning of  the concept of  momentum (Gron, 
1973). 

2.3. Asynchronous Interpretation 

In fact, there is no reason why each observer should integrate at constant 
time. Then Gron (1973) gives a general method for dealing with bodies 
having relativistic speeds. We quote: "One starts with the theory for the 
description of the object in his inertial system. This is put in covariant form, 
i.e., it is given a tensor formulation. In this form the theory can be trans- 
formed to any inertial frame." 

Consequently, one has to write (1) and (2) in a covariant form, and 
to do that we follow Rohrlich (1970). In Minkowski space the volume V ~ 
is the three-dimensional hyperplane t = const. It has a unit normal which 

o (0 ,0 ,0 ,  i), so that is the t ime l ike  four-vector n o with components  n~ = 
n~n~ = - 1 .  In general, a spacelike hyperplane with normal vector n and 
n ,n~  = - 1  has the infinitesimal element d3o-~ = n~ d3o - and this measure 
has the following properties: 

(i) d3o-~ is a four-vector. 
(ii) d3o - = - n ~  d3o'~ is invariant, that is, d3o " = d V  ~ 

Then the convariant form of  (1), (2) valid for any referential frame is 

o I a  P~, = g~ d3tr, g~ = T ,~n ,  (6) 

The superscript a means that one uses the asynchronous interpretation. We 
shall illustrate (6) in the next section. 

R e m a r k .  Kwal (1949) seems to have been the first to promote the 
asynchronous interpretation of the Lorentz transformation in his relativistic 
discussion of the incorrect factor of  4/3 in the Abraham-Lorentz  force 
equation. 
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3. THE E N E R G Y - M O M E N T U M  FOUR-VECTOR 
ON A WAVEFRONT 

3.1. Lorentz Transformation of the Energy-Momentum Tensor 

Let us consider an observer moving along 0z with the uniform velocity 
v and the corresponding Lorentz transformation: 

�9 _ V2~ -1/2 
L= I O ,  M = y - i ; / c  t l /C '  y = ( 1  ~-~/ (7) 

I is the 2 x 2 identity matrix. Let T be the matrix with elements T~  ; then 
we get, under  the transformation (7), 

T ~-> T' = L'TL (8) 

U is the transpose matrix. In particular, we get 

T13= T(T~ 3 _--iVc T~4) 

[ , iv ) 
T14=y~T14+cT'I3  

[ , iv ) 
T23~- ~/~ T 2 3 - ?  T~4 

/ , iv 

" /)2 1 T33 = y 2 T~3 -- I VC ( T~3 + T~4) ---~ T~4 

7"34 = T 2 T~3-4---~ T~3-4- T 3 4 - -  T44 
c 

2 / i v  19 2 , iv ) 
7"43 = 3' ~,c T33+ tT'43+ c--5 T 3 4 - ?  T~4 

T44=T2 "V 2 +iv(  ~ T ~ 4 ) + T 4 4 ]  r;3 c r43+ 

If the primed frame is the rest frame, these relations reduce to 

T,3 = TT~ 723 = yT~ 

iv o ivT TO 
T14 = -  yTl3 T24 = -  ~23 

r c 

 o4) 
T44 =- iT, - v_ ( TO 3 _ TO4) 

r 

T34 = w 32( TO 3 _ TO4) 
c 

7-44= y2 ---C"2 To3 + TO4 

(9) 

(lo) 
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since one has T~ T~4k = 0. From (5) and (10) one sees at once that if 
T~ ~ 0, one has g~ ~ 0 and similarly with T~ and g~. As previously said, 
this result is a bitter pill. 

Let us now consider the relation (6). The vector orthogonal to the 
hyperplace z -  ct = 0 is n~ = (0, O, v, ic), so that we get 

g . =  (r~31) q - i c T . 4 )  (11) 

and using (10), the components (11) become 

a a /2 0 
gl =g2 =0,  g~ = -  g4, g~=g~ (12) 

c 

s which provide a more gratifying result than g . .  

Remark .  The previous four-vector n.  is not a unit vector, to make the 
a limit v ~-~ c consistent. Moreover, with this choice, g .  = gO. 

3.2. What  Happens on a Wavefront? 

We assume that the wavefront is the hyperplane z-ct = 0 propagating 
along 0z with velocity of  light c. We first write the relations (9) in the two 
alternative forms 

I)T~3 "q- icTP14 = icy  -1 7 1 4  

IJTr23 q- icTr24 = ir T 2 4  

vTr33 + icTr34 = icT34 + /)744 

v T~43 + ic T'44 = ic T44 - o T34 

-uTI3  q- iCTl4 = icT -1 T~4 

- v T 2 3  q- icT24 = ic,y -1T~4 

--/)733 q- icT34 = icTr34 - IJTr44 

-vT43 q- icT44 = icT'44 + 12Tf34 

(13a) 

(13b) 

According to (11), the left-hand side of the relation (13a) [resp. (13b)] gives 
a modulo c -j the components of the energy-momentum density vector gu in 

the primed (resp. unprimed) frame with the relative velocity between the 
two frames given by the four-vector with components (0, O, +v, ic). 
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The interesting point is that the relations (13) hold for v = c and become 

T~3 + iT'14 -- 0 

Tr23 + iT'24 = 0 
(14a) 

T ~ 3 +  iT'34 = i T 3 , +  T44 

T'43 + iT'44 = iT44 -- T34 

- T l 3 +  i Z l 4 = O  

- T23 + iT24 = 0 
(14b) 

-- T33 + iT34 -= iTr34 - T'44 

- T43 -k- iT4 ,  = iT'44 + T'34 

which are the relations between the components  of  the energy-momentum 
tensor for two observers moving with respect to each other with the velocity 
of  light. 

Consequently,  in agreement with the asynchronous interpretation of 
relativistic dynamics and as for relations (13), we may interpret the left-hand 
side of  (14a) and (14b) as the components  of  the energy-momentum density 
vector g~ in frames moving with the velocity of  light. The superscript c 
characterizes this situation. Moreover, if the pr imed frame is the wavefront 
and if an asterisk denotes quantities on the wavefront, we get from (14) 

glc = g~ = O, g~ = - ig~ = T34+* iT34" * (15) 

c Of course g~. may be written in a covariant form: 

g~ = T~,~m, (16) 

where m~ is a null vector (m ,m ~ = 0)  orthogonal to the wavefront. When 
the wavefront is the hyperplane z -  ct = 0 one has my = (0, 0, 1, - i ) .  

Now if da is an invariant measure on the wavefront, the energy- 
momentum four-vector P~ is given by the relation 

P ;  = f g~ da (17) 

and to define the measure da, one has to take into account the following 
facts: (i) da must be invariant for any observer moving with the velocity 
of  light, and (ii) the 3-volume measure on the light cone is zero (Synge, 
1958). A beautiful illustration of this result may be found in Suffern (1988). 
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This suggests the following definition of da: 

da = (�89 dtr~t~ do'~t3) 1/2, dcr~t~ = e , . . ~  dx~  d x  2 

with 

where e~,~t~ is the 
infinitesimal vectors 

(18) 

m,. dx{. = m .  dx~ = 0 (18') 

permutation tensor, while dx  I and d x ~  are two 
orthogonal to m s. For instance, for the wavefront 

z - c t = O  and m . = ( 0 , 0 ,  1 , - i )  one has 

dx~  = (dx,  0, 0, 0), dx~  = (0, dy, 0, 0) 

and the measure da reduces to d x  dy. 
It is interesting to discuss the case of  the electromagnetic field, whose 

energy-momentum tensor is given in the Appendix. Traditionally, one 
considers that the electromagnetic momentum density g~ is given by the 
equality gj = s f f c  2, g4 = s4, that is, on the wavefront, 

c _icT)~4, s ~ - ~ (19) Sj = 4 - -  - -  T 4 4  

while according to (15) one has 

g~ = g~ = O, g~ = ig~4 = 4 (icS4 - s~) (20) 
C 

The components g~ and g~ are zero as expected for any wave propagating 
along 0z, which is not the case for s~, s2 except when the electromagnetic 
wave is a plane wave, as can be seen in the Appendix. 

Consequently, except for plane waves, the Poynting vector does not 
represent the energy flow of the electromagnetic field, a result already 
emphasized by Rohrlich (1970), but which seems to have been overlooked. 
Moreover, making v ~ c in Rohrlich's expression of the energy-momentum 
density vector leads to the relations (20). 

4. CONCLUSIONS 

The relations (13), which appear in a natural way as a consequence of 
the Lorentz transformation, promote the asynchronous interpretation of  the 
energy-momentum density vector. Moreover, this interpretation makes it 
possible to take the limit leading to the relations (14). 

This result is particularly interesting for discussing boundary value 
problems with data on a surface moving with the velocity of light (Hillion, 
1988). 
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APPENDIX 

The e l ec t romagne t i c  e n e r g y - m o m e n t u m  tenso r  T ~  is (Synge,  1958)  j22 E ~ + H x -  W 

T~. = ExEy + HxHy 
E~E~ + HxH~ 

i ( EyHz - E~Hy ) 

ExEy + HxHy 
 ,2y+i-i y-W 
G G  + HyHz 

i( E~H~ - Exile) 

E~Ez + H~H~ 

EyE~ + HyH~ 
E ~ + H 2 z - W  

i(GHy-EyH~) 

i( EyH~ - E~Hy) 

i(EzH~ - E~H~) 

i( ExHy - EyHx) 

- W  

with W = I ( E 2 +  H2) .  One sees at once that  Sl = s2 = 0 and  s 3 = g3 0nly  if  

Ez = Hz = 0 and  ]E] = [H t. 
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